Tip:
Highlight text to annotate it
X
These days scientists know how you inherit
characteristics from your parents.
They are able to calculate probabilities
of having a specific trait
or getting a genetic disease
according to the information they have
from the parents and the family history.
But how is this possible?
To understand how traits pass
from one living being to its descendants,
we need to go back in time to the 19th century
and a man named Gregor Mendel.
Mendel was an Austrian monk and biologist
who loved to work with plants.
By breeding the pea plants
he was growing in the monastery's garden,
he discovered the principals that rule heredity.
In one of most classic examples,
Mendel combined a pure-bred, yellow-seeded plant
with a pure-bred, green-seeded plant,
and he got only yellow seeds.
He called the yellow-colored trait the dominant one
because it was expressed in all the new seeds.
Then he let the new yellow-seeded hybrid plants self-fertilize.
And in this second generation,
he got both yellow and green seeds,
which meant that the green trait had been hidden
by the dominant yellow.
He called this hidden trait the recessive trait.
From those results, Mendel inferred
that each trait depends on a pair of factors,
one of them coming from the mother
and the other from the father.
Now we know that these factors are called alleles
and represent the different variations of a gene.
Depending on which type of allele
Mendel found in each seed,
we can have what we call a homozygous pea,
where both alleles are identical,
and what we call a heterozygous pea,
when the two alleles are different.
This combination of alleles is known as genotype
and its result, being yellow or green,
is called phenotype.
To clearly visualize how alleles are distributed
among its descendants,
we can use a diagram called the Punnett Square.
You just place the different alleles on both axes
and then you figure out the possible combinations.
Let's look at Mendel's peas, for example.
Let's write the dominate yellow allele as an upper-case "Y"
and the recessive green allele as a lower-case "y".
The upper-case Y always overpowers his lower-case friend,
so the only time you get green babies
is if you have lower-case y's.
In Mendel's first generation,
the yellow, homozygous pea mom
will give each pea kid a yellow, dominant allele,
and the green, homozygous pea dad
will give a green, recessive allele.
So, all the pea kids will be yellow, heterozygous.
Then, in the second generation,
where the two heterozygous kids marry,
their babies could have any of the three possible genotypes,
showing the two possible phenotypes
in a three-to-one proportion.
But even peas have a lot of characteristics.
For example, besides for being yellow or green,
peas can be round or wrinkled,
so we could have all these possible combinations:
round yellow peas,
round green peas,
wrinkled yellow peas,
and wrinkled green peas.
To calculate the proportions of each genotype and phenotype,
you can use a Pennett Square too.
Of course, this will make it a little more complex.
And lots of things are more complicated than peas,
like, say, people.
These days scientists know a lot more
about genetics and heredity.
And, there are many other ways
in which some characteristics are inherited.
But, it all started with Mendel and his peas.